SOCLARB

SOCIETIES OF COMPUTATION LABORATORY

OPEN RENDER BUMP

TANGENT SPACE VECTOR CALCULATION

1. TANGENT SPACE

Bump mapping is usually calculated in tangent space. Tangent space, just like object space, is an
orthonormal basis defined with three vectors X, Y, Z (see Figure 1). The X-vector corresponds
to the U/S direction in texture coordinates (red), the Y-vector corresponds to the V/T direction
(), and the Z-vector corresponds to the smoothed vertex normal (plue). Tangent space vectors
is often called tangent, bi-normal, and normal, however, in this document they’re named as they are in object or
world space.

Figure 1. Tangent space at a vertex.

2. SMOOTHING NORMALS

The first thing we need is the face normal. This can either be read from model-file or
calculated at load time.

Secondly, for each vertex in the mesh, do this

0 Average the face-normals of each face that the current vertex is connected to,
and that share the same smoothing group(s). The result becomes the
(smoothed) vertex normal.

This process can be very slow in a naive implementation, but can easily be optimized.

Before the smoothing begins, build a face-list for each vertex, i.e. the vertex has a list of
all the faces it is connected to. Then the order of the algorithm becomes a single loop-
thru of the n vertices.

Averaging normals at sharp edges may give poor results, therefore it is recommended to

put a threshold on the averaging. I.e. only average the face-normals if their difference in
degrees is less than 90-120. This degree setting is also the way smoothing works in the modeling

package Lightwave 3D. In some tests a setting of 120 proved to give the best result in a
variety of cases. ORB uses 120 degrees if not an angle is supplied from a Lightwave
model, in that case, the imported value is used.

Figure 2. Smoothed vertex normal (olue).

3. TANGENT VECTORS CALCULATION

The Z vector of the vertex tangent space was calculated during the normal smoothing (2.). Now
we need the X, and the Y vectors at each vertex. To calculate the tangent X and Y vectors, you will
need three functions: Cal cul at eTri angl eBasis(), Othogonalize(), and
Cl osest Poi nt OnLi ne() . The code for these functions is included in the Appendix.

For each triangle tri in the mesh, do this:

Get the vertices V0, V1, V2 (type VECTOR, float[3])

Get the vertex tex-coords (vOs, vOt), (v1s, v1t), (v2s, v2t) (type float)

Have two vectors (facetangentX, and facetangentY) to store the result in

Send the data to the CalculateTriangleBasis() function:

(o]

Cal cul at eTri angl eBasi s(VO, Vi1, V2, vOs, vOt, vls, vlt, v2s, v2t,
&f acet angent X, &f acetangenty);

Now we have the tangent vectors (facetangentX, and facetangentY) for the face!

In order to get the tangents for a vertex, we need to average the result of the tangent spaces
of all the faces that is connected to that vertex (and share smoothing group). For each vertex E

do:

Example; a vertex E has 6 faces connected to it. We calculated the tangent vectors for

each of these faces in the previous step (facetangentX, facetangentY) (see Figure 3). We
then average the tangents of all the 6 faces to get the tangent space for vertex E:

(0]

E’s tangentX = (face0.facetangentX + facel.facetangentX + face2.facetangentX
+ face3.facetangentX + faced.facetangentX + face5.facetangentX) / 6; (see
Figure 4)

But, only average if the tangents are less than 90 degrees apart, otherwise, there

is discontinuous texture mapping, and the vertex should be split anyway (this
depends on texture coords is supplied by face or by vertex). The same goes for

discontinuities in smoothing groups.
Finally, we have to correct the tangents so they make an orthonormal basis that

fit the smoothed vertex normal. We do this with Gram-Schmidt
Orthogonalization [1]. This is what the Orthogonalize() function does.

vert E- >t angentX = Orthogonal i ze(vert E- >normal , vertE- >tangentX) ;

vertE- >tangentY = Othogonal i ze(vertE->normal, vertE->tangentY);

Figure 3. Tangents X and Y (red and green) calculated for the six faces that this vertex is
connected to.

Figure 4. Tangents X,Y, are now averaged/“‘smoothed” and orthogonalized.

APPENDIX A. CALCULATE TRIANGLE BASIS FUNCTION

This function was derived from the technique presented in “Mathematics for 3D Game
Programming & Computer Graphics” by E. Lengyel [1].

voi d Cal cTri angl eBasi s(VECTOR& E, VECTOR& F, VECTOR& G float sE, float tE float sF,
float tF, float sG float tG VECTOR * tangentX, VECTOR * tangenty)

VECTCR P = F - E

VECTOR Q= G - E

float sl sF - sE;

float t1

tF - tE;

float s2 = sG- sE;

float t2 tG- tE;

float pghvatrix[2][3];

pgWatrix[0][0] = P.vector[0];

pghatri x[0] [1]

P.vector[1];

pgMatri x[0] [2]

P.vector[2];

pghatri x[1] [0]

Q. vector[0];

pgMatri x[1] [1] Q vector[1];

pgWatri x[1][2] = Q vector[2];

float temp = 1/ (s1*t2 - s2*t1);

float stMatrix[2][2];

stMatrix[0][0] =t2 * tenp;

stMatrix[0][1]

-t1 * tenp;

stMatrix[1][0] = -s2 * tenp;

stMatrix[1][1] = sl * tenp;

float tbhMatrix[2][3];

/1 stMatrix * pgMatrix

tbMat ri x[0] 0]

tbMat ri x[0] [1]

tbMat ri x[0] [2]

tbMat ri x[1] [0]

tbMat ri x[1] [1]

tbMat ri x[1] [2]

stMatrix[0] [0] *pgMat ri x[0] [O]
st Matri x[0] [0] *pgMat ri x[0] [1]
stMatrix[0] [0] *pgMat rix[0][2]
stMatrix[1] [0] *pgMat ri x[0] [0]
stMatrix[1] [0] *pgMat ri x[0] [1]

stMatrix[1][0] *pgMatrix[0][2]

tangent X->Set (tbMatri x[0][0], tbMatrix[O][1],

tangent Y->Set (tbMatrix[1][0], tbMatrix[1][1],

tangent X- >Nor mal i ze();

tangent Y->Nor mal i ze();

+ stMatrix[0][1] *pgMatrix[1][O];
+ stMatrix[0][1] *pgMatrix[1][1];
+ stMatrix[O][1] *pgMatrix[1][2];
+ stMatrix[1][1] *pgMatrix[1][O];
+ stMatrix[1][1] *pgMatrix[1][1];

+ stMatrix[1][1]*pgMatrix[1][2];

tbMatrix[0][2]);

tbMatrix[1]1[2]);

APPENDIX B. ORTHOGONALIZE FUNCTION

VECTOR Ort hogonal i ze(VECTOR v1, VECTOR v2)

{
VECTOR v2Proj V1 = d osest Poi nt OnLi ne(vl, -v1, v2);
VECTOR res = v2 - v2Proj V1;
res. Nornalize();
return res;
}

VECTOR Cl osest Poi nt OnLi ne(VECTOR & a, VECTOR & b, VECTOR & p)

// abis the line, p the point in question

VECTOR ¢ = p- a;

VECTOR V = b- g

float d

V. Lengt h();

vV =V]| 1. 0f; /1 normalize V

float t =V %c; /1 V dot c

/1 Check to see if t is beyond the extents of the |ine segnent

if (t < 0.0f)

VECTOR res = a;

return res;

if (t > d)

VECTOR res = b;

return res;

// Return the point between a and b

V=V]|t; //set length of Vtot.

VECTOR res = a + V,

return res;

REFERENCES

[1] Lengyel, “Mthematics for 3D Game Progranming & Conputer G aphics”, Charles
R ver Media, 2002.

CONTACT

Christian Seger

Soci eti es of Conmputation Laboratory (SOCLAB),

Department of Software Engi neering and Conputer Science,
Bl eki nge Institute of Technol ogy,

Box 520, Ronneby - Sweden.

chri sti an. seger @t h. se

10

